case class GeneralParams(parallelism: String, topK: Option[Int], numIterations: Int, learningRate: Double, numLeaves: Option[Int], maxBin: Option[Int], binSampleCount: Option[Int], baggingFraction: Option[Double], posBaggingFraction: Option[Double], negBaggingFraction: Option[Double], baggingFreq: Option[Int], baggingSeed: Option[Int], earlyStoppingRound: Int, improvementTolerance: Double, featureFraction: Option[Double], featureFractionByNode: Option[Double], maxDepth: Option[Int], minSumHessianInLeaf: Option[Double], numMachines: Int, modelString: Option[String], categoricalFeatures: Array[Int], verbosity: Int, boostingType: String, lambdaL1: Option[Double], lambdaL2: Option[Double], metric: Option[String], minGainToSplit: Option[Double], maxDeltaStep: Option[Double], maxBinByFeature: Array[Int], minDataPerBin: Option[Int], minDataInLeaf: Option[Int], topRate: Option[Double], otherRate: Option[Double], monotoneConstraints: Array[Int], monotoneConstraintsMethod: Option[String], monotonePenalty: Option[Double], featureNames: Array[String]) extends ParamGroup with Product with Serializable

Defines the general Booster parameters passed to the LightGBM library.

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GeneralParams
  2. Product
  3. Equals
  4. ParamGroup
  5. Serializable
  6. Serializable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GeneralParams(parallelism: String, topK: Option[Int], numIterations: Int, learningRate: Double, numLeaves: Option[Int], maxBin: Option[Int], binSampleCount: Option[Int], baggingFraction: Option[Double], posBaggingFraction: Option[Double], negBaggingFraction: Option[Double], baggingFreq: Option[Int], baggingSeed: Option[Int], earlyStoppingRound: Int, improvementTolerance: Double, featureFraction: Option[Double], featureFractionByNode: Option[Double], maxDepth: Option[Int], minSumHessianInLeaf: Option[Double], numMachines: Int, modelString: Option[String], categoricalFeatures: Array[Int], verbosity: Int, boostingType: String, lambdaL1: Option[Double], lambdaL2: Option[Double], metric: Option[String], minGainToSplit: Option[Double], maxDeltaStep: Option[Double], maxBinByFeature: Array[Int], minDataPerBin: Option[Int], minDataInLeaf: Option[Int], topRate: Option[Double], otherRate: Option[Double], monotoneConstraints: Array[Int], monotoneConstraintsMethod: Option[String], monotonePenalty: Option[Double], featureNames: Array[String])

Value Members

  1. def appendParams(sb: ParamsStringBuilder): ParamsStringBuilder
    Definition Classes
    GeneralParamsParamGroup
  2. val baggingFraction: Option[Double]
  3. val baggingFreq: Option[Int]
  4. val baggingSeed: Option[Int]
  5. val binSampleCount: Option[Int]
  6. val boostingType: String
  7. val categoricalFeatures: Array[Int]
  8. val earlyStoppingRound: Int
  9. val featureFraction: Option[Double]
  10. val featureFractionByNode: Option[Double]
  11. val featureNames: Array[String]
  12. val improvementTolerance: Double
  13. val lambdaL1: Option[Double]
  14. val lambdaL2: Option[Double]
  15. val learningRate: Double
  16. val maxBin: Option[Int]
  17. val maxBinByFeature: Array[Int]
  18. val maxDeltaStep: Option[Double]
  19. val maxDepth: Option[Int]
  20. val metric: Option[String]
  21. val minDataInLeaf: Option[Int]
  22. val minDataPerBin: Option[Int]
  23. val minGainToSplit: Option[Double]
  24. val minSumHessianInLeaf: Option[Double]
  25. val modelString: Option[String]
  26. val monotoneConstraints: Array[Int]
  27. val monotoneConstraintsMethod: Option[String]
  28. val monotonePenalty: Option[Double]
  29. val negBaggingFraction: Option[Double]
  30. val numIterations: Int
  31. val numLeaves: Option[Int]
  32. val numMachines: Int
  33. val otherRate: Option[Double]
  34. val parallelism: String
  35. val posBaggingFraction: Option[Double]
  36. def toString(): String
    Definition Classes
    ParamGroup → AnyRef → Any
  37. val topK: Option[Int]
  38. val topRate: Option[Double]
  39. val verbosity: Int