class ImageFeaturizer extends Transformer with HasInputCol with HasOutputCol with Wrappable with ComplexParamsWritable with SynapseMLLogging
The ImageFeaturizer
relies on a ONNX model to do the featurization. One can set
this model using the setOnnxModel
parameter with a model you create yourself, or
setModel
to get a predefined named model from the ONNXHub.
The ImageFeaturizer
takes an input column of images (the type returned by the
ImageReader
), and automatically resizes them to fit the ONNXModel's inputs. It
then feeds them through a pre-trained ONNX model.
- Alphabetic
- By Inheritance
- ImageFeaturizer
- SynapseMLLogging
- ComplexParamsWritable
- MLWritable
- Wrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- HasOutputCol
- HasInputCol
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- val autoConvertToColor: BooleanParam
- val channelNormalizationMeans: DoubleArrayParam
- val channelNormalizationStds: DoubleArrayParam
-
lazy val
classNameHelper: String
- Attributes
- protected
- Definition Classes
- BaseWrappable
-
final
def
clear(param: Param[_]): ImageFeaturizer.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
- val colorScaleFactor: DoubleParam
-
def
companionModelClassName: String
- Attributes
- protected
- Definition Classes
- BaseWrappable
- val convertFeaturesToVector: (Seq[Seq[Seq[Float]]]) ⇒ DenseVector
- val convertOutputToVector: (Seq[Float]) ⇒ DenseVector
-
def
copy(extra: ParamMap): Transformer
- Definition Classes
- ImageFeaturizer → Transformer → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
lazy val
copyrightLines: String
- Attributes
- protected
- Definition Classes
- BaseWrappable
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val dropNa: BooleanParam
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
featureTensorName: Param[String]
Name of the output node which represents features
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getAutoConvertToColor: Boolean
- def getChannelNormalizationMeans: Array[Double]
- def getChannelNormalizationStds: Array[Double]
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def getColorScaleFactor: Double
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDropNa: Boolean
- def getFeatureTensorName: String
- def getHeadless: Boolean
- def getIgnoreDecodingErrors: Boolean
- def getImageHeight: Int
- def getImageTensorName: String
- def getImageWidth: Int
-
def
getInputCol: String
- Definition Classes
- HasInputCol
- def getMiniBatchSize: Int
- def getModel: Array[Byte]
- def getOnnxModel: ONNXModel
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutputCol: String
- Definition Classes
- HasOutputCol
- def getOutputTensorName: String
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getParamInfo(p: Param[_]): ParamInfo[_]
- Definition Classes
- BaseWrappable
-
def
getPayload(methodName: String, numCols: Option[Int], executionSeconds: Option[Double], exception: Option[Exception]): Map[String, String]
- Attributes
- protected
- Definition Classes
- SynapseMLLogging
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- val headless: BooleanParam
- val ignoreDecodingErrors: BooleanParam
- val imageHeight: IntParam
-
val
imageTensorName: Param[String]
Name of the input node for images
- val imageWidth: IntParam
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputCol: Param[String]
The name of the input column
The name of the input column
- Definition Classes
- HasInputCol
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logBase(info: Map[String, String], featureName: Option[String]): Unit
- Attributes
- protected
- Definition Classes
- SynapseMLLogging
-
def
logBase(methodName: String, numCols: Option[Int], executionSeconds: Option[Double], featureName: Option[String]): Unit
- Attributes
- protected
- Definition Classes
- SynapseMLLogging
-
def
logClass(featureName: String): Unit
- Definition Classes
- SynapseMLLogging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logErrorBase(methodName: String, e: Exception): Unit
- Attributes
- protected
- Definition Classes
- SynapseMLLogging
-
def
logFit[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTransform[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
- Definition Classes
- SynapseMLLogging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- val onnxModel: TransformerParam
-
val
outputCol: Param[String]
The name of the output column
The name of the output column
- Definition Classes
- HasOutputCol
-
val
outputTensorName: Param[String]
Name of the output node which represents probabilities
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
lazy val
pyClassDoc: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
lazy val
pyClassName: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyExtraEstimatorImports: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyExtraEstimatorMethods: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
lazy val
pyInheritedClasses: Seq[String]
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
lazy val
pyInternalWrapper: Boolean
- Attributes
- protected
- Definition Classes
- ImageFeaturizer → PythonWrappable
-
lazy val
pyObjectBaseClass: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamArg[T](p: Param[T]): String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamDefault[T](p: Param[T]): Option[String]
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamGetter(p: Param[_]): String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamSetter(p: Param[_]): String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamsArgs: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamsDefaults: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
lazy val
pyParamsDefinitions: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamsGetters: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamsSetters: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pythonClass(): String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
rClass(): String
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rDocString: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rExtraBodyLines: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rExtraInitLines: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
lazy val
rFuncName: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
lazy val
rInternalWrapper: Boolean
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rParamArg[T](p: Param[T]): String
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rParamsArgs: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rSetterLines: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): ImageFeaturizer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): ImageFeaturizer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): ImageFeaturizer.this.type
- Definition Classes
- Params
- def setAutoConvertToColor(value: Boolean): ImageFeaturizer.this.type
- def setChannelNormalizationMeans(value: Array[Double]): ImageFeaturizer.this.type
- def setChannelNormalizationStds(value: Array[Double]): ImageFeaturizer.this.type
- def setColorScaleFactor(value: Double): ImageFeaturizer.this.type
-
final
def
setDefault(paramPairs: ParamPair[_]*): ImageFeaturizer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): ImageFeaturizer.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDropNa(value: Boolean): ImageFeaturizer.this.type
- def setFeatureTensorName(value: String): ImageFeaturizer.this.type
- def setHeadless(value: Boolean): ImageFeaturizer.this.type
- def setIgnoreDecodingErrors(value: Boolean): ImageFeaturizer.this.type
- def setImageHeight(value: Int): ImageFeaturizer.this.type
- def setImageTensorName(value: String): ImageFeaturizer.this.type
- def setImageWidth(value: Int): ImageFeaturizer.this.type
-
def
setInputCol(value: String): ImageFeaturizer.this.type
- Definition Classes
- HasInputCol
- def setMiniBatchSize(value: Int): ImageFeaturizer.this.type
- def setModel(bytes: Array[Byte]): ImageFeaturizer.this.type
- def setModel(name: String): ImageFeaturizer.this.type
- def setModelInfo(info: ONNXModelInfo): ImageFeaturizer.this.type
- def setModelLocation(path: String): ImageFeaturizer.this.type
- def setOnnxModel(value: ONNXModel): ImageFeaturizer.this.type
-
def
setOutputCol(value: String): ImageFeaturizer.this.type
- Definition Classes
- HasOutputCol
- def setOutputTensorName(value: String): ImageFeaturizer.this.type
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
thisStage: Params
- Attributes
- protected
- Definition Classes
- BaseWrappable
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transform(dataset: Dataset[_]): DataFrame
- Definition Classes
- ImageFeaturizer → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
transformSchema(schema: StructType): StructType
Add the features column to the schema
Add the features column to the schema
- schema
Schema to transform
- returns
schema with features column
- Definition Classes
- ImageFeaturizer → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- ImageFeaturizer → SynapseMLLogging → Identifiable
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- ComplexParamsWritable → MLWritable