class ImageFeaturizer extends Transformer with HasInputCol with HasOutputCol with Wrappable with ComplexParamsWritable with SynapseMLLogging
The ImageFeaturizer
relies on a ONNX model to do the featurization. One can set
this model using the setOnnxModel
parameter with a model you create yourself, or
setModel
to get a predefined named model from the ONNXHub.
The ImageFeaturizer
takes an input column of images (the type returned by the
ImageReader
), and automatically resizes them to fit the ONNXModel's inputs. It
then feeds them through a pre-trained ONNX model.
- Alphabetic
- By Inheritance
- ImageFeaturizer
- SynapseMLLogging
- ComplexParamsWritable
- MLWritable
- Wrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- HasOutputCol
- HasInputCol
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
- val autoConvertToColor: BooleanParam
- val channelNormalizationMeans: DoubleArrayParam
- val channelNormalizationStds: DoubleArrayParam
-
final
def
clear(param: Param[_]): ImageFeaturizer.this.type
- Definition Classes
- Params
- val colorScaleFactor: DoubleParam
- val convertFeaturesToVector: (Seq[Seq[Seq[Float]]]) ⇒ DenseVector
- val convertOutputToVector: (Seq[Float]) ⇒ DenseVector
-
def
copy(extra: ParamMap): Transformer
- Definition Classes
- ImageFeaturizer → Transformer → PipelineStage → Params
- val dropNa: BooleanParam
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
featureTensorName: Param[String]
Name of the output node which represents features
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getAutoConvertToColor: Boolean
- def getChannelNormalizationMeans: Array[Double]
- def getChannelNormalizationStds: Array[Double]
- def getColorScaleFactor: Double
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDropNa: Boolean
- def getFeatureTensorName: String
- def getHeadless: Boolean
- def getIgnoreDecodingErrors: Boolean
- def getImageHeight: Int
- def getImageTensorName: String
- def getImageWidth: Int
-
def
getInputCol: String
- Definition Classes
- HasInputCol
- def getMiniBatchSize: Int
- def getModel: Array[Byte]
- def getOnnxModel: ONNXModel
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutputCol: String
- Definition Classes
- HasOutputCol
- def getOutputTensorName: String
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getParamInfo(p: Param[_]): ParamInfo[_]
- Definition Classes
- BaseWrappable
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
- val headless: BooleanParam
- val ignoreDecodingErrors: BooleanParam
- val imageHeight: IntParam
-
val
imageTensorName: Param[String]
Name of the input node for images
- val imageWidth: IntParam
-
val
inputCol: Param[String]
The name of the input column
The name of the input column
- Definition Classes
- HasInputCol
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
logClass(featureName: String): Unit
- Definition Classes
- SynapseMLLogging
-
def
logFit[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logTransform[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
- Definition Classes
- SynapseMLLogging
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
- val onnxModel: TransformerParam
-
val
outputCol: Param[String]
The name of the output column
The name of the output column
- Definition Classes
- HasOutputCol
-
val
outputTensorName: Param[String]
Name of the output node which represents probabilities
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): ImageFeaturizer.this.type
- Definition Classes
- Params
- def setAutoConvertToColor(value: Boolean): ImageFeaturizer.this.type
- def setChannelNormalizationMeans(value: Array[Double]): ImageFeaturizer.this.type
- def setChannelNormalizationStds(value: Array[Double]): ImageFeaturizer.this.type
- def setColorScaleFactor(value: Double): ImageFeaturizer.this.type
- def setDropNa(value: Boolean): ImageFeaturizer.this.type
- def setFeatureTensorName(value: String): ImageFeaturizer.this.type
- def setHeadless(value: Boolean): ImageFeaturizer.this.type
- def setIgnoreDecodingErrors(value: Boolean): ImageFeaturizer.this.type
- def setImageHeight(value: Int): ImageFeaturizer.this.type
- def setImageTensorName(value: String): ImageFeaturizer.this.type
- def setImageWidth(value: Int): ImageFeaturizer.this.type
-
def
setInputCol(value: String): ImageFeaturizer.this.type
- Definition Classes
- HasInputCol
- def setMiniBatchSize(value: Int): ImageFeaturizer.this.type
- def setModel(bytes: Array[Byte]): ImageFeaturizer.this.type
- def setModel(name: String): ImageFeaturizer.this.type
- def setModelInfo(info: ONNXModelInfo): ImageFeaturizer.this.type
- def setModelLocation(path: String): ImageFeaturizer.this.type
- def setOnnxModel(value: ONNXModel): ImageFeaturizer.this.type
-
def
setOutputCol(value: String): ImageFeaturizer.this.type
- Definition Classes
- HasOutputCol
- def setOutputTensorName(value: String): ImageFeaturizer.this.type
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transform(dataset: Dataset[_]): DataFrame
- Definition Classes
- ImageFeaturizer → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
transformSchema(schema: StructType): StructType
Add the features column to the schema
Add the features column to the schema
- schema
Schema to transform
- returns
schema with features column
- Definition Classes
- ImageFeaturizer → PipelineStage
-
val
uid: String
- Definition Classes
- ImageFeaturizer → SynapseMLLogging → Identifiable
-
def
write: MLWriter
- Definition Classes
- ComplexParamsWritable → MLWritable