Packages

class ImageTransformer extends Transformer with HasInputCol with HasOutputCol with Wrappable with ComplexParamsWritable with SynapseMLLogging

Image processing stage. Please refer to OpenCV for additional information

Linear Supertypes
SynapseMLLogging, ComplexParamsWritable, MLWritable, Wrappable, RWrappable, PythonWrappable, BaseWrappable, HasOutputCol, HasInputCol, Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ImageTransformer
  2. SynapseMLLogging
  3. ComplexParamsWritable
  4. MLWritable
  5. Wrappable
  6. RWrappable
  7. PythonWrappable
  8. BaseWrappable
  9. HasOutputCol
  10. HasInputCol
  11. Transformer
  12. PipelineStage
  13. Logging
  14. Params
  15. Serializable
  16. Serializable
  17. Identifiable
  18. AnyRef
  19. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ImageTransformer()
  2. new ImageTransformer(uid: String)

    uid

    The id of the module

Value Members

  1. val autoConvertToColor: BooleanParam
  2. def blur(height: Double, width: Double): ImageTransformer.this.type
  3. def centerCrop(height: Int, width: Int): ImageTransformer.this.type
  4. final def clear(param: Param[_]): ImageTransformer.this.type
    Definition Classes
    Params
  5. def colorFormat(format: Int): ImageTransformer.this.type
  6. val colorScaleFactor: DoubleParam
  7. def copy(extra: ParamMap): Transformer
    Definition Classes
    ImageTransformer → Transformer → PipelineStage → Params
  8. def crop(x: Int, y: Int, height: Int, width: Int): ImageTransformer.this.type
  9. val emptyStages: Array[Map[String, Any]]
  10. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  11. def explainParams(): String
    Definition Classes
    Params
  12. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  13. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  14. def flip(flipCode: Int): ImageTransformer.this.type

    Flips the image

    Flips the image

    flipCode

    is a flag to specify how to flip the image: - 0 means flipping around the x-axis (i.e. up-down) - positive value (for example, 1) means flipping around y-axis (left-right) - negative value (for example, -1) means flipping around both axes (diagonally) See OpenCV documentation for details.

  15. def gaussianKernel(apertureSize: Int, sigma: Double): ImageTransformer.this.type
  16. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  17. def getAutoConvertToColor: Boolean
  18. def getColorScaleFactor: Double
  19. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  20. def getIgnoreDecodingErrors: Boolean
  21. def getInputCol: String

    Definition Classes
    HasInputCol
  22. def getNormalizeMean: Array[Double]
  23. def getNormalizeStd: Array[Double]
  24. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  25. def getOutputCol: String

    Definition Classes
    HasOutputCol
  26. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  27. def getParamInfo(p: Param[_]): ParamInfo[_]
    Definition Classes
    BaseWrappable
  28. def getStages: Array[Map[String, Any]]
  29. def getTensorChannelOrder: String
  30. def getTensorElementType: DataType
  31. def getToTensor: Boolean
  32. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  33. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  34. val ignoreDecodingErrors: BooleanParam
  35. val inputCol: Param[String]

    The name of the input column

    The name of the input column

    Definition Classes
    HasInputCol
  36. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  37. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  38. def logClass(featureName: String): Unit
    Definition Classes
    SynapseMLLogging
  39. def logFit[T](f: ⇒ T, columns: Int): T
    Definition Classes
    SynapseMLLogging
  40. def logTransform[T](f: ⇒ T, columns: Int): T
    Definition Classes
    SynapseMLLogging
  41. def logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
    Definition Classes
    SynapseMLLogging
  42. def makePyFile(conf: CodegenConfig): Unit
    Definition Classes
    PythonWrappable
  43. def makeRFile(conf: CodegenConfig): Unit
    Definition Classes
    RWrappable
  44. def normalize(mean: List[Double], std: List[Double], colorScaleFactor: Double): ImageTransformer.this.type

    For py4j invocation.

  45. def normalize(mean: Array[Double], std: Array[Double], colorScaleFactor: Double): ImageTransformer.this.type
  46. val normalizeMean: DoubleArrayParam
  47. val normalizeStd: DoubleArrayParam
  48. val outputCol: Param[String]

    The name of the output column

    The name of the output column

    Definition Classes
    HasOutputCol
  49. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  50. def pyAdditionalMethods: String
    Definition Classes
    PythonWrappable
  51. def pyInitFunc(): String
    Definition Classes
    PythonWrappable
  52. def resize(size: Int, keepAspectRatio: Boolean): ImageTransformer.this.type

    If keep aspect ratio is set to true, the shorter side of the image will be resized to the specified size.

  53. def resize(height: Int, width: Int): ImageTransformer.this.type
  54. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  55. final def set[T](param: Param[T], value: T): ImageTransformer.this.type
    Definition Classes
    Params
  56. def setAutoConvertToColor(value: Boolean): ImageTransformer.this.type
  57. def setColorScaleFactor(value: Double): ImageTransformer.this.type
  58. def setIgnoreDecodingErrors(value: Boolean): ImageTransformer.this.type
  59. def setInputCol(value: String): ImageTransformer.this.type

    Definition Classes
    HasInputCol
  60. def setNormalizeMean(value: Array[Double]): ImageTransformer.this.type
  61. def setNormalizeStd(value: Array[Double]): ImageTransformer.this.type
  62. def setOutputCol(value: String): ImageTransformer.this.type

    Definition Classes
    HasOutputCol
  63. def setStages(jsonString: String): ImageTransformer.this.type
  64. def setStages(value: ArrayList[HashMap[String, Any]]): ImageTransformer.this.type
  65. def setStages(value: Array[Map[String, Any]]): ImageTransformer.this.type
  66. def setTensorChannelOrder(value: String): ImageTransformer.this.type
  67. def setTensorElementType(value: DataType): ImageTransformer.this.type
  68. def setToTensor(value: Boolean): ImageTransformer.this.type
  69. val stages: ArrayMapParam
  70. val tensorChannelOrder: Param[String]
  71. val tensorElementType: DataTypeParam
  72. def threshold(threshold: Double, maxVal: Double, thresholdType: Int): ImageTransformer.this.type
  73. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  74. val toTensor: BooleanParam
  75. def transform(dataset: Dataset[_]): DataFrame
    Definition Classes
    ImageTransformer → Transformer
  76. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  77. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  78. def transformSchema(schema: StructType): StructType
    Definition Classes
    ImageTransformer → PipelineStage
  79. val uid: String
    Definition Classes
    ImageTransformerSynapseMLLogging → Identifiable
  80. def write: MLWriter
    Definition Classes
    ComplexParamsWritable → MLWritable