package train
- Alphabetic
- Public
- All
Type Members
-
abstract
class
AutoTrainedModel[TrainedModel <: Model[TrainedModel]] extends Model[TrainedModel] with ComplexParamsWritable with HasLabelCol with HasFeaturesCol
Defines common inheritance and functions across auto trained models.
-
trait
AutoTrainer[TrainedModel <: Model[TrainedModel]] extends Estimator[TrainedModel] with HasLabelCol with HasInputCols with ComplexParamsWritable with HasFeaturesCol with Wrappable
Defines common inheritance and parameters across trainers.
- trait CPISParams extends Wrappable with DefaultParamsWritable with HasLabelCol with HasScoresCol with HasScoredLabelsCol with HasScoredProbabilitiesCol with HasEvaluationMetric
-
class
ComputeModelStatistics extends Transformer with ComputeModelStatisticsParams with SynapseMLLogging
Evaluates the given scored dataset.
- trait ComputeModelStatisticsParams extends Wrappable with DefaultParamsWritable with HasLabelCol with HasScoresCol with HasScoredLabelsCol with HasEvaluationMetric
-
class
ComputePerInstanceStatistics extends Transformer with CPISParams with SynapseMLLogging
Evaluates the given scored dataset with per instance metrics.
Evaluates the given scored dataset with per instance metrics.
The Regression metrics are: - L1_loss - L2_loss
The Classification metrics are: - log_loss
-
class
MetricsLogger extends AnyRef
Helper class for logging metrics to log4j.
-
class
TrainClassifier extends Estimator[TrainedClassifierModel] with AutoTrainer[TrainedClassifierModel] with SynapseMLLogging
Trains a classification model.
Trains a classification model. Featurizes the given data into a vector of doubles.
Note the behavior of the reindex and labels parameters, the parameters interact as:
reindex -> false labels -> false (Empty) Assume all double values, don't use metadata, assume natural ordering
reindex -> true labels -> false (Empty) Index, use natural ordering of string indexer
reindex -> false labels -> true (Specified) Assume user knows indexing, apply label values. Currently only string type supported.
reindex -> true labels -> true (Specified) Validate labels matches column type, try to recast to label type, reindex label column
The currently supported classifiers are: Logistic Regression Classifier Decision Tree Classifier Random Forest Classifier Gradient Boosted Trees Classifier Naive Bayes Classifier Multilayer Perceptron Classifier In addition to any generic learner that inherits from Predictor.
-
class
TrainRegressor extends Estimator[TrainedRegressorModel] with AutoTrainer[TrainedRegressorModel] with SynapseMLLogging
Trains a regression model.
-
class
TrainedClassifierModel extends AutoTrainedModel[TrainedClassifierModel] with Wrappable with SynapseMLLogging
Model produced by TrainClassifier.
-
class
TrainedRegressorModel extends AutoTrainedModel[TrainedRegressorModel] with Wrappable with SynapseMLLogging
Model produced by TrainRegressor.
Value Members
- object ComputeModelStatistics extends DefaultParamsReadable[ComputeModelStatistics] with Serializable
- object ComputePerInstanceStatistics extends DefaultParamsReadable[ComputePerInstanceStatistics] with Serializable
- object TrainClassifier extends ComplexParamsReadable[TrainClassifier] with Serializable
- object TrainRegressor extends ComplexParamsReadable[TrainRegressor] with Serializable
- object TrainedClassifierModel extends ComplexParamsReadable[TrainedClassifierModel] with Serializable
- object TrainedRegressorModel extends ComplexParamsReadable[TrainedRegressorModel] with Serializable