class ImageTransformer extends Transformer with HasInputCol with HasOutputCol with Wrappable with ComplexParamsWritable with SynapseMLLogging
Image processing stage. Please refer to OpenCV for additional information
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- ImageTransformer
- SynapseMLLogging
- ComplexParamsWritable
- MLWritable
- Wrappable
- DotnetWrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- HasOutputCol
- HasInputCol
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
Value Members
- val autoConvertToColor: BooleanParam
- def blur(height: Double, width: Double): ImageTransformer.this.type
- def centerCrop(height: Int, width: Int): ImageTransformer.this.type
-
final
def
clear(param: Param[_]): ImageTransformer.this.type
- Definition Classes
- Params
- def colorFormat(format: Int): ImageTransformer.this.type
- val colorScaleFactor: DoubleParam
-
def
copy(extra: ParamMap): Transformer
- Definition Classes
- ImageTransformer → Transformer → PipelineStage → Params
- def crop(x: Int, y: Int, height: Int, width: Int): ImageTransformer.this.type
-
def
dotnetAdditionalMethods: String
- Definition Classes
- DotnetWrappable
- val emptyStages: Array[Map[String, Any]]
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
flip(flipCode: Int): ImageTransformer.this.type
Flips the image
Flips the image
- flipCode
is a flag to specify how to flip the image: - 0 means flipping around the x-axis (i.e. up-down) - positive value (for example, 1) means flipping around y-axis (left-right) - negative value (for example, -1) means flipping around both axes (diagonally) See OpenCV documentation for details.
- def gaussianKernel(apertureSize: Int, sigma: Double): ImageTransformer.this.type
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getAutoConvertToColor: Boolean
- def getColorScaleFactor: Double
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getIgnoreDecodingErrors: Boolean
-
def
getInputCol: String
- Definition Classes
- HasInputCol
- def getNormalizeMean: Array[Double]
- def getNormalizeStd: Array[Double]
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutputCol: String
- Definition Classes
- HasOutputCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getParamInfo(p: Param[_]): ParamInfo[_]
- Definition Classes
- BaseWrappable
- def getStages: Array[Map[String, Any]]
- def getTensorChannelOrder: String
- def getTensorElementType: DataType
- def getToTensor: Boolean
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
- val ignoreDecodingErrors: BooleanParam
-
val
inputCol: Param[String]
The name of the input column
The name of the input column
- Definition Classes
- HasInputCol
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
logClass(featureName: String): Unit
- Definition Classes
- SynapseMLLogging
-
def
logFit[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logTransform[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
- Definition Classes
- SynapseMLLogging
-
def
makeDotnetFile(conf: CodegenConfig): Unit
- Definition Classes
- DotnetWrappable
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
-
def
normalize(mean: List[Double], std: List[Double], colorScaleFactor: Double): ImageTransformer.this.type
For py4j invocation.
- def normalize(mean: Array[Double], std: Array[Double], colorScaleFactor: Double): ImageTransformer.this.type
- val normalizeMean: DoubleArrayParam
- val normalizeStd: DoubleArrayParam
-
val
outputCol: Param[String]
The name of the output column
The name of the output column
- Definition Classes
- HasOutputCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
def
resize(size: Int, keepAspectRatio: Boolean): ImageTransformer.this.type
If keep aspect ratio is set to true, the shorter side of the image will be resized to the specified size.
- def resize(height: Int, width: Int): ImageTransformer.this.type
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): ImageTransformer.this.type
- Definition Classes
- Params
- def setAutoConvertToColor(value: Boolean): ImageTransformer.this.type
- def setColorScaleFactor(value: Double): ImageTransformer.this.type
- def setIgnoreDecodingErrors(value: Boolean): ImageTransformer.this.type
-
def
setInputCol(value: String): ImageTransformer.this.type
- Definition Classes
- HasInputCol
- def setNormalizeMean(value: Array[Double]): ImageTransformer.this.type
- def setNormalizeStd(value: Array[Double]): ImageTransformer.this.type
-
def
setOutputCol(value: String): ImageTransformer.this.type
- Definition Classes
- HasOutputCol
- def setStages(jsonString: String): ImageTransformer.this.type
- def setStages(value: ArrayList[HashMap[String, Any]]): ImageTransformer.this.type
- def setStages(value: Array[Map[String, Any]]): ImageTransformer.this.type
- def setTensorChannelOrder(value: String): ImageTransformer.this.type
- def setTensorElementType(value: DataType): ImageTransformer.this.type
- def setToTensor(value: Boolean): ImageTransformer.this.type
- val stages: ArrayMapParam
- val tensorChannelOrder: Param[String]
- val tensorElementType: DataTypeParam
- def threshold(threshold: Double, maxVal: Double, thresholdType: Int): ImageTransformer.this.type
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- val toTensor: BooleanParam
-
def
transform(dataset: Dataset[_]): DataFrame
- Definition Classes
- ImageTransformer → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- ImageTransformer → PipelineStage
-
val
uid: String
- Definition Classes
- ImageTransformer → SynapseMLLogging → Identifiable
-
def
write: MLWriter
- Definition Classes
- ComplexParamsWritable → MLWritable