class IndexToValue extends Transformer with HasInputCol with HasOutputCol with Wrappable with DefaultParamsWritable with BasicLogging
This class takes in a categorical column with MML style attributes and then transforms it back to the original values. This extends sparkML IndexToString by allowing the transformation back to any types of values.
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- IndexToValue
- BasicLogging
- DefaultParamsWritable
- MLWritable
- Wrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- HasOutputCol
- HasInputCol
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Value Members
-
final
def
clear(param: Param[_]): IndexToValue.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): IndexToValue.this.type
- Definition Classes
- IndexToValue → Transformer → PipelineStage → Params
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getInputCol: String
- Definition Classes
- HasInputCol
- def getLevelUDF[T](dataset: Dataset[_])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[T], ct: ClassTag[T]): UserDefinedFunction
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutputCol: String
- Definition Classes
- HasOutputCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
val
inputCol: Param[String]
The name of the input column
The name of the input column
- Definition Classes
- HasInputCol
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
logClass(): Unit
- Definition Classes
- BasicLogging
-
def
logFit[T](f: ⇒ T): T
- Definition Classes
- BasicLogging
-
def
logPredict[T](f: ⇒ T): T
- Definition Classes
- BasicLogging
-
def
logTrain[T](f: ⇒ T): T
- Definition Classes
- BasicLogging
-
def
logTransform[T](f: ⇒ T): T
- Definition Classes
- BasicLogging
-
def
logVerb[T](verb: String, f: ⇒ T): T
- Definition Classes
- BasicLogging
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
-
val
outputCol: Param[String]
The name of the output column
The name of the output column
- Definition Classes
- HasOutputCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): IndexToValue.this.type
- Definition Classes
- Params
-
def
setInputCol(value: String): IndexToValue.this.type
- Definition Classes
- HasInputCol
-
def
setOutputCol(value: String): IndexToValue.this.type
- Definition Classes
- HasOutputCol
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transform(dataset: Dataset[_]): DataFrame
- dataset
- The input dataset, to be transformed
- returns
The DataFrame that results from column selection
- Definition Classes
- IndexToValue → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- IndexToValue → PipelineStage
-
val
uid: String
- Definition Classes
- IndexToValue → BasicLogging → Identifiable
-
val
ver: String
- Definition Classes
- BasicLogging
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable