class ValueIndexer extends Estimator[ValueIndexerModel] with ValueIndexerParams with BasicLogging
Fits a dictionary of values from the input column. Model then transforms a column to a categorical column of the given array of values. Similar to StringIndexer except it can be used on any value types.
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- ValueIndexer
- BasicLogging
- ValueIndexerParams
- HasOutputCol
- HasInputCol
- DefaultParamsWritable
- MLWritable
- Wrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Value Members
-
final
def
clear(param: Param[_]): ValueIndexer.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): Estimator[ValueIndexerModel]
- Definition Classes
- ValueIndexer → Estimator → PipelineStage → Params
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
fit(dataset: Dataset[_]): ValueIndexerModel
Fits the dictionary of values from the input column.
Fits the dictionary of values from the input column.
- dataset
The input dataset to train.
- returns
The model for transforming columns to categorical.
- Definition Classes
- ValueIndexer → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[ValueIndexerModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): ValueIndexerModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): ValueIndexerModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getInputCol: String
- Definition Classes
- HasInputCol
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutputCol: String
- Definition Classes
- HasOutputCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
val
inputCol: Param[String]
The name of the input column
The name of the input column
- Definition Classes
- HasInputCol
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
logClass(): Unit
- Definition Classes
- BasicLogging
-
def
logFit[T](f: ⇒ T): T
- Definition Classes
- BasicLogging
-
def
logPredict[T](f: ⇒ T): T
- Definition Classes
- BasicLogging
-
def
logTrain[T](f: ⇒ T): T
- Definition Classes
- BasicLogging
-
def
logTransform[T](f: ⇒ T): T
- Definition Classes
- BasicLogging
-
def
logVerb[T](verb: String, f: ⇒ T): T
- Definition Classes
- BasicLogging
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
-
val
outputCol: Param[String]
The name of the output column
The name of the output column
- Definition Classes
- HasOutputCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): ValueIndexer.this.type
- Definition Classes
- Params
-
def
setInputCol(value: String): ValueIndexer.this.type
- Definition Classes
- HasInputCol
-
def
setOutputCol(value: String): ValueIndexer.this.type
- Definition Classes
- HasOutputCol
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- ValueIndexer → PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- ValueIndexer → BasicLogging → Identifiable
-
val
ver: String
- Definition Classes
- BasicLogging
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable