Packages

trait AutoTrainer[TrainedModel <: Model[TrainedModel]] extends Estimator[TrainedModel] with HasLabelCol with ComplexParamsWritable with HasFeaturesCol with Wrappable

Defines common inheritance and parameters across trainers.

Linear Supertypes
Wrappable, RWrappable, PythonWrappable, BaseWrappable, HasFeaturesCol, ComplexParamsWritable, MLWritable, HasLabelCol, Estimator[TrainedModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. AutoTrainer
  2. Wrappable
  3. RWrappable
  4. PythonWrappable
  5. BaseWrappable
  6. HasFeaturesCol
  7. ComplexParamsWritable
  8. MLWritable
  9. HasLabelCol
  10. Estimator
  11. PipelineStage
  12. Logging
  13. Params
  14. Serializable
  15. Serializable
  16. Identifiable
  17. AnyRef
  18. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def copy(extra: ParamMap): Estimator[TrainedModel]
    Definition Classes
    Estimator → PipelineStage → Params
  2. abstract def fit(dataset: Dataset[_]): TrainedModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  3. abstract def modelDoc: String

    Doc for model to run.

  4. abstract def transformSchema(schema: StructType): StructType
    Definition Classes
    PipelineStage
  5. abstract val uid: String
    Definition Classes
    Identifiable

Concrete Value Members

  1. final def clear(param: Param[_]): AutoTrainer.this.type
    Definition Classes
    Params
  2. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  3. def explainParams(): String
    Definition Classes
    Params
  4. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  5. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  6. val featuresCol: Param[String]

    The name of the features column

    The name of the features column

    Definition Classes
    HasFeaturesCol
  7. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[TrainedModel]
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  8. def fit(dataset: Dataset[_], paramMap: ParamMap): TrainedModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  9. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): TrainedModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  10. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  11. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  12. def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  13. def getLabelCol: String

    Definition Classes
    HasLabelCol
  14. def getModel: Estimator[_ <: Model[_]]

  15. def getNumFeatures: Int

  16. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  17. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  18. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  19. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  20. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  21. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  22. val labelCol: Param[String]

    The name of the label column

    The name of the label column

    Definition Classes
    HasLabelCol
  23. def makePyFile(conf: CodegenConfig): Unit
    Definition Classes
    PythonWrappable
  24. def makeRFile(conf: CodegenConfig): Unit
    Definition Classes
    RWrappable
  25. val model: EstimatorParam

    Model to run.

    Model to run. See doc on derived classes.

  26. val numFeatures: IntParam

    Number of features to hash to

  27. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  28. def pyAdditionalMethods: String
    Definition Classes
    PythonWrappable
  29. def pyInitFunc(): String
    Definition Classes
    PythonWrappable
  30. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  31. final def set[T](param: Param[T], value: T): AutoTrainer.this.type
    Definition Classes
    Params
  32. def setFeaturesCol(value: String): AutoTrainer.this.type

    Definition Classes
    HasFeaturesCol
  33. def setLabelCol(value: String): AutoTrainer.this.type

    Definition Classes
    HasLabelCol
  34. def setModel(value: Estimator[_ <: Model[_]]): AutoTrainer.this.type

  35. def setNumFeatures(value: Int): AutoTrainer.this.type

  36. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  37. def write: MLWriter
    Definition Classes
    ComplexParamsWritable → MLWritable