Packages

class TrainRegressor extends Estimator[TrainedRegressorModel] with AutoTrainer[TrainedRegressorModel] with BasicLogging

Trains a regression model.

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TrainRegressor
  2. BasicLogging
  3. AutoTrainer
  4. Wrappable
  5. RWrappable
  6. PythonWrappable
  7. BaseWrappable
  8. HasFeaturesCol
  9. ComplexParamsWritable
  10. MLWritable
  11. HasLabelCol
  12. Estimator
  13. PipelineStage
  14. Logging
  15. Params
  16. Serializable
  17. Serializable
  18. Identifiable
  19. AnyRef
  20. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TrainRegressor()
  2. new TrainRegressor(uid: String)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. lazy val classNameHelper: String
    Attributes
    protected
    Definition Classes
    BaseWrappable
  7. final def clear(param: Param[_]): TrainRegressor.this.type
    Definition Classes
    Params
  8. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  9. def companionModelClassName: String
    Attributes
    protected
    Definition Classes
    BaseWrappable
  10. def copy(extra: ParamMap): Estimator[TrainedRegressorModel]
    Definition Classes
    TrainRegressor → Estimator → PipelineStage → Params
  11. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  12. lazy val copyrightLines: String
    Attributes
    protected
    Definition Classes
    BaseWrappable
  13. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  14. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  15. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  16. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  17. def explainParams(): String
    Definition Classes
    Params
  18. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  19. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  20. val featuresCol: Param[String]

    The name of the features column

    The name of the features column

    Definition Classes
    HasFeaturesCol
  21. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  22. def fit(dataset: Dataset[_]): TrainedRegressorModel

    Fits the regression model.

    Fits the regression model.

    dataset

    The input dataset to train.

    returns

    The trained regression model.

    Definition Classes
    TrainRegressor → Estimator
  23. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[TrainedRegressorModel]
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  24. def fit(dataset: Dataset[_], paramMap: ParamMap): TrainedRegressorModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  25. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): TrainedRegressorModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  26. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  27. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  28. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  29. def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  30. def getLabelCol: String

    Definition Classes
    HasLabelCol
  31. def getModel: Estimator[_ <: Model[_]]

    Definition Classes
    AutoTrainer
  32. def getNumFeatures: Int

    Definition Classes
    AutoTrainer
  33. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  34. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  35. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  36. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  37. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  38. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  39. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  40. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  41. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  42. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  43. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  44. val labelCol: Param[String]

    The name of the label column

    The name of the label column

    Definition Classes
    HasLabelCol
  45. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  46. def logBase(methodName: String): Unit
    Attributes
    protected
    Definition Classes
    BasicLogging
  47. def logClass(): Unit
    Definition Classes
    BasicLogging
  48. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  49. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  50. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  51. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  52. def logErrorBase(methodName: String, e: Exception): Unit
    Attributes
    protected
    Definition Classes
    BasicLogging
  53. def logFit[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  54. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  55. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  56. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  57. def logPredict[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  58. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  59. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  60. def logTrain[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  61. def logTransform[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  62. def logVerb[T](verb: String, f: ⇒ T): T
    Definition Classes
    BasicLogging
  63. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  64. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  65. def makePyFile(conf: CodegenConfig): Unit
    Definition Classes
    PythonWrappable
  66. def makeRFile(conf: CodegenConfig): Unit
    Definition Classes
    RWrappable
  67. val model: EstimatorParam

    Model to run.

    Model to run. See doc on derived classes.

    Definition Classes
    AutoTrainer
  68. def modelDoc: String

    Doc for model to run.

    Doc for model to run.

    Definition Classes
    TrainRegressorAutoTrainer
  69. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  70. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  71. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  72. val numFeatures: IntParam

    Number of features to hash to

    Number of features to hash to

    Definition Classes
    AutoTrainer
  73. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  74. def pyAdditionalMethods: String
    Definition Classes
    PythonWrappable
  75. lazy val pyClassDoc: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  76. lazy val pyClassName: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  77. def pyExtraEstimatorImports: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  78. def pyExtraEstimatorMethods: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  79. lazy val pyInheritedClasses: Seq[String]
    Attributes
    protected
    Definition Classes
    PythonWrappable
  80. def pyInitFunc(): String
    Definition Classes
    PythonWrappable
  81. lazy val pyInternalWrapper: Boolean
    Attributes
    protected
    Definition Classes
    PythonWrappable
  82. lazy val pyObjectBaseClass: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  83. def pyParamArg[T](p: Param[T]): String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  84. def pyParamDefault[T](p: Param[T]): Option[String]
    Attributes
    protected
    Definition Classes
    PythonWrappable
  85. def pyParamGetter(p: Param[_]): String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  86. def pyParamSetter(p: Param[_]): String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  87. def pyParamsArgs: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  88. def pyParamsDefaults: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  89. lazy val pyParamsDefinitions: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  90. def pyParamsGetters: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  91. def pyParamsSetters: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  92. def pythonClass(): String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  93. def rClass(): String
    Attributes
    protected
    Definition Classes
    RWrappable
  94. def rDocString: String
    Attributes
    protected
    Definition Classes
    RWrappable
  95. def rExtraBodyLines: String
    Attributes
    protected
    Definition Classes
    RWrappable
  96. def rExtraInitLines: String
    Attributes
    protected
    Definition Classes
    RWrappable
  97. lazy val rFuncName: String
    Attributes
    protected
    Definition Classes
    RWrappable
  98. lazy val rInternalWrapper: Boolean
    Attributes
    protected
    Definition Classes
    RWrappable
  99. def rParamArg[T](p: Param[T]): String
    Attributes
    protected
    Definition Classes
    RWrappable
  100. def rParamsArgs: String
    Attributes
    protected
    Definition Classes
    RWrappable
  101. def rSetterLines: String
    Attributes
    protected
    Definition Classes
    RWrappable
  102. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  103. final def set(paramPair: ParamPair[_]): TrainRegressor.this.type
    Attributes
    protected
    Definition Classes
    Params
  104. final def set(param: String, value: Any): TrainRegressor.this.type
    Attributes
    protected
    Definition Classes
    Params
  105. final def set[T](param: Param[T], value: T): TrainRegressor.this.type
    Definition Classes
    Params
  106. final def setDefault(paramPairs: ParamPair[_]*): TrainRegressor.this.type
    Attributes
    protected
    Definition Classes
    Params
  107. final def setDefault[T](param: Param[T], value: T): TrainRegressor.this.type
    Attributes
    protected
    Definition Classes
    Params
  108. def setFeaturesCol(value: String): TrainRegressor.this.type

    Definition Classes
    HasFeaturesCol
  109. def setLabelCol(value: String): TrainRegressor.this.type

    Definition Classes
    HasLabelCol
  110. def setModel(value: Estimator[_ <: Model[_]]): TrainRegressor.this.type

    Definition Classes
    AutoTrainer
  111. def setNumFeatures(value: Int): TrainRegressor.this.type

    Definition Classes
    AutoTrainer
  112. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  113. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  114. def transformSchema(schema: StructType): StructType
    Definition Classes
    TrainRegressor → PipelineStage
    Annotations
    @DeveloperApi()
  115. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  116. val uid: String
    Definition Classes
    TrainRegressorBasicLogging → Identifiable
  117. val ver: String
    Definition Classes
    BasicLogging
  118. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  119. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  120. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  121. def write: MLWriter
    Definition Classes
    ComplexParamsWritable → MLWritable

Inherited from BasicLogging

Inherited from Wrappable

Inherited from RWrappable

Inherited from PythonWrappable

Inherited from BaseWrappable

Inherited from HasFeaturesCol

Inherited from ComplexParamsWritable

Inherited from MLWritable

Inherited from HasLabelCol

Inherited from Estimator[TrainedRegressorModel]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

getParam

param

setParam

Ungrouped