Packages

c

org.apache.spark.ml

BaseRegressor

abstract class BaseRegressor[F, R <: Regressor[F, R, M], M <: RegressionModel[F, M]] extends Regressor[F, R, M]

Temporary hack to expose private Regressor class in SparkML as a developer API

Linear Supertypes
Regressor[F, R, M], Predictor[F, R, M], PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, Estimator[M], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. BaseRegressor
  2. Regressor
  3. Predictor
  4. PredictorParams
  5. HasPredictionCol
  6. HasFeaturesCol
  7. HasLabelCol
  8. Estimator
  9. PipelineStage
  10. Logging
  11. Params
  12. Serializable
  13. Serializable
  14. Identifiable
  15. AnyRef
  16. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BaseRegressor()

Abstract Value Members

  1. abstract def copy(extra: ParamMap): R
    Definition Classes
    Predictor → Estimator → PipelineStage → Params
  2. abstract def train(dataset: Dataset[_]): M
    Attributes
    protected
    Definition Classes
    Predictor
  3. abstract val uid: String
    Definition Classes
    Identifiable

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. final def clear(param: Param[_]): BaseRegressor.this.type
    Definition Classes
    Params
  7. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  8. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  9. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  10. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  12. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  13. def explainParams(): String
    Definition Classes
    Params
  14. def extractInstances(dataset: Dataset[_], validateInstance: (Instance) ⇒ Unit): RDD[Instance]
    Attributes
    protected
    Definition Classes
    PredictorParams
  15. def extractInstances(dataset: Dataset[_]): RDD[Instance]
    Attributes
    protected
    Definition Classes
    PredictorParams
  16. def extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint]
    Attributes
    protected
    Definition Classes
    Predictor
  17. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  18. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  19. final val featuresCol: Param[String]
    Definition Classes
    HasFeaturesCol
  20. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  21. def fit(dataset: Dataset[_]): M
    Definition Classes
    Predictor → Estimator
  22. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[M]
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  23. def fit(dataset: Dataset[_], paramMap: ParamMap): M
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  24. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): M
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  25. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  26. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  27. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  28. final def getFeaturesCol: String
    Definition Classes
    HasFeaturesCol
  29. final def getLabelCol: String
    Definition Classes
    HasLabelCol
  30. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  31. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  32. final def getPredictionCol: String
    Definition Classes
    HasPredictionCol
  33. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  34. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  35. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  36. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  37. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  38. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  39. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  40. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  41. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  42. final val labelCol: Param[String]
    Definition Classes
    HasLabelCol
  43. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  44. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  45. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  46. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  47. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  48. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  49. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  50. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  51. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  52. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  53. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  54. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  55. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  56. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  57. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  58. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  59. final val predictionCol: Param[String]
    Definition Classes
    HasPredictionCol
  60. final def set(paramPair: ParamPair[_]): BaseRegressor.this.type
    Attributes
    protected
    Definition Classes
    Params
  61. final def set(param: String, value: Any): BaseRegressor.this.type
    Attributes
    protected
    Definition Classes
    Params
  62. final def set[T](param: Param[T], value: T): BaseRegressor.this.type
    Definition Classes
    Params
  63. final def setDefault(paramPairs: ParamPair[_]*): BaseRegressor.this.type
    Attributes
    protected
    Definition Classes
    Params
  64. final def setDefault[T](param: Param[T], value: T): BaseRegressor.this.type
    Attributes
    protected
    Definition Classes
    Params
  65. def setFeaturesCol(value: String): R
    Definition Classes
    Predictor
  66. def setLabelCol(value: String): R
    Definition Classes
    Predictor
  67. def setPredictionCol(value: String): R
    Definition Classes
    Predictor
  68. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  69. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  70. def transformSchema(schema: StructType): StructType
    Definition Classes
    Predictor → PipelineStage
  71. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  72. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
    Attributes
    protected
    Definition Classes
    PredictorParams
  73. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  74. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  75. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from Regressor[F, R, M]

Inherited from Predictor[F, R, M]

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from Estimator[M]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Ungrouped