package ml

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ml
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. abstract class BaseRegressor[F, R <: Regressor[F, R, M], M <: RegressionModel[F, M]] extends Regressor[F, R, M]

    Temporary hack to expose private Regressor class in SparkML as a developer API

  2. trait ComplexParamsReadable[T] extends MLReadable[T]
  3. trait ComplexParamsWritable extends MLWritable
  4. class DFSerializer extends Serializer[DataFrame]
  5. class ObjectSerializer[O] extends Serializer[O]
  6. class PipelineArraySerializer extends Serializer[Array[PipelineStage]]
  7. class PipelineSerializer extends Serializer[PipelineStage]
  8. abstract class Ranker[FeaturesType, Learner <: Ranker[FeaturesType, Learner, M], M <: RankerModel[FeaturesType, M]] extends Predictor[FeaturesType, Learner, M] with PredictorParams with HasGroupCol

    Ranker base class

    Ranker base class

    FeaturesType

    Type of input features. E.g., org.apache.spark.mllib.linalg.Vector

    Learner

    Concrete Estimator type

    M

    Concrete Model type

  9. abstract class RankerModel[FeaturesType, M <: RankerModel[FeaturesType, M]] extends PredictionModel[FeaturesType, M] with PredictorParams

    Model produced by a Ranker.

    Model produced by a Ranker.

    FeaturesType

    Type of input features. E.g., org.apache.spark.mllib.linalg.Vector

    M

    Concrete Model type.

  10. abstract class Serializer[O] extends AnyRef

Inherited from AnyRef

Inherited from Any

Ungrouped