mmlspark.cntk package

Submodules

mmlspark.cntk.CNTKModel module

class mmlspark.cntk.CNTKModel.CNTKModel(batchInput=True, convertOutputToDenseVector=True, feedDict={'ARGUMENT_0': 'ARGUMENT_0'}, fetchDict={'OUTPUT_0': 'OUTPUT_0'}, miniBatcher=None, model=None, shapeOutput=False)[source]

Bases: mmlspark.cntk._CNTKModel._CNTKModel

Parameters
  • SparkSession (SparkSession) – The SparkSession that will be used to find the model

  • location (str) – The location of the model, either on local or HDFS

getInputCol()[source]
getInputNode()[source]
getInputNodeIndex()[source]
getInputShapes()[source]
getOutputCol()[source]
getOutputNode()[source]
getOutputNodeIndex()[source]
rebroadcastCNTKModel(sparkSession)[source]
setFeedDict(dict)[source]
Parameters

feedDict (dict) – Map of CNTK Variable names (keys) and Column Names (values) (default: Map(ARGUMENT_0 -> ARGUMENT_0))

setFetchDict(dict)[source]
Parameters

fetchDict (dict) – Map of Column Names (keys) and CNTK Variable names (values) (default: Map(OUTPUT_0 -> OUTPUT_0))

setInputCol(n)[source]
setInputNode(n)[source]
setInputNodeIndex(n)[source]
setMiniBatchSize(n)[source]
setModelLocation(location)[source]
setOutputCol(n)[source]
setOutputNode(n)[source]
setOutputNodeIndex(n)[source]

Module contents

MicrosoftML is a library of Python classes to interface with the Microsoft scala APIs to utilize Apache Spark to create distibuted machine learning models.

MicrosoftML simplifies training and scoring classifiers and regressors, as well as facilitating the creation of models using the CNTK library, images, and text.