mmlspark.lightgbm package¶
Submodules¶
mmlspark.lightgbm.LightGBMClassifier module¶
-
class
mmlspark.lightgbm.LightGBMClassifier.
LightGBMClassificationModel
(java_model=None)[source]¶ Bases:
mmlspark.lightgbm._LightGBMClassifier._LightGBMClassificationModel
-
getFeatureImportances
(importance_type='split')[source]¶ Get the feature importances as a list. The importance_type can be “split” or “gain”.
-
static
loadNativeModelFromFile
(filename, labelColName='label', featuresColName='features', predictionColName='prediction', probColName='probability', rawPredictionColName='rawPrediction')[source]¶ Load the model from a native LightGBM text file.
-
-
class
mmlspark.lightgbm.LightGBMClassifier.
LightGBMClassifier
(baggingFraction=1.0, baggingFreq=0, baggingSeed=3, boostFromAverage=True, boostingType='gbdt', categoricalSlotIndexes=None, categoricalSlotNames=None, defaultListenPort=12400, earlyStoppingRound=0, featureFraction=1.0, featuresCol='features', initScoreCol=None, isProvideTrainingMetric=False, isUnbalance=False, labelCol='label', lambdaL1=0.0, lambdaL2=0.0, learningRate=0.1, maxBin=255, maxDepth=-1, metric='', minSumHessianInLeaf=0.001, modelString='', numBatches=0, numIterations=100, numLeaves=31, objective='binary', parallelism='data_parallel', predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', thresholds=None, timeout=1200.0, useBarrierExecutionMode=False, validationIndicatorCol=None, verbosity=1, weightCol=None)[source]¶ Bases:
mmlspark.lightgbm._LightGBMClassifier._LightGBMClassifier
mmlspark.lightgbm.LightGBMRanker module¶
-
class
mmlspark.lightgbm.LightGBMRanker.
LightGBMRanker
(baggingFraction=1.0, baggingFreq=0, baggingSeed=3, boostFromAverage=True, boostingType='gbdt', categoricalSlotIndexes=None, categoricalSlotNames=None, defaultListenPort=12400, earlyStoppingRound=0, evalAt=[1, 2, 3, 4, 5], featureFraction=1.0, featuresCol='features', groupCol=None, initScoreCol=None, isProvideTrainingMetric=False, labelCol='label', labelGain=[], lambdaL1=0.0, lambdaL2=0.0, learningRate=0.1, maxBin=255, maxDepth=-1, maxPosition=20, metric='', minSumHessianInLeaf=0.001, modelString='', numBatches=0, numIterations=100, numLeaves=31, objective='lambdarank', parallelism='data_parallel', predictionCol='prediction', timeout=1200.0, useBarrierExecutionMode=False, validationIndicatorCol=None, verbosity=1, weightCol=None)[source]¶ Bases:
mmlspark.lightgbm._LightGBMRanker._LightGBMRanker
-
class
mmlspark.lightgbm.LightGBMRanker.
LightGBMRankerModel
(java_model=None)[source]¶ Bases:
mmlspark.lightgbm._LightGBMRanker._LightGBMRankerModel
-
getFeatureImportances
(importance_type='split')[source]¶ Get the feature importances as a list. The importance_type can be “split” or “gain”.
-
static
loadNativeModelFromFile
(filename, labelColName='label', featuresColName='features', predictionColName='prediction')[source]¶ Load the model from a native LightGBM text file.
-
mmlspark.lightgbm.LightGBMRegressor module¶
-
class
mmlspark.lightgbm.LightGBMRegressor.
LightGBMRegressionModel
(java_model=None)[source]¶ Bases:
mmlspark.lightgbm._LightGBMRegressor._LightGBMRegressionModel
-
getFeatureImportances
(importance_type='split')[source]¶ Get the feature importances as a list. The importance_type can be “split” or “gain”.
-
static
loadNativeModelFromFile
(filename, labelColName='label', featuresColName='features', predictionColName='prediction')[source]¶ Load the model from a native LightGBM text file.
-
-
class
mmlspark.lightgbm.LightGBMRegressor.
LightGBMRegressor
(alpha=0.9, baggingFraction=1.0, baggingFreq=0, baggingSeed=3, boostFromAverage=True, boostingType='gbdt', categoricalSlotIndexes=None, categoricalSlotNames=None, defaultListenPort=12400, earlyStoppingRound=0, featureFraction=1.0, featuresCol='features', initScoreCol=None, isProvideTrainingMetric=False, labelCol='label', lambdaL1=0.0, lambdaL2=0.0, learningRate=0.1, maxBin=255, maxDepth=-1, metric='', minSumHessianInLeaf=0.001, modelString='', numBatches=0, numIterations=100, numLeaves=31, objective='regression', parallelism='data_parallel', predictionCol='prediction', timeout=1200.0, tweedieVariancePower=1.5, useBarrierExecutionMode=False, validationIndicatorCol=None, verbosity=1, weightCol=None)[source]¶ Bases:
mmlspark.lightgbm._LightGBMRegressor._LightGBMRegressor
Module contents¶
MicrosoftML is a library of Python classes to interface with the Microsoft scala APIs to utilize Apache Spark to create distibuted machine learning models.
MicrosoftML simplifies training and scoring classifiers and regressors, as well as facilitating the creation of models using the CNTK library, images, and text.