mmlspark.train package¶
Submodules¶
mmlspark.train.ComputeModelStatistics module¶
-
class
mmlspark.train.ComputeModelStatistics.
ComputeModelStatistics
(evaluationMetric='all', labelCol=None, scoredLabelsCol=None, scoresCol=None)[source]¶ Bases:
mmlspark.core.schema.Utils.ComplexParamsMixin
,pyspark.ml.util.JavaMLReadable
,pyspark.ml.util.JavaMLWritable
,pyspark.ml.wrapper.JavaTransformer
- Parameters
evaluationMetric (str) – Metric to evaluate models with (default: all)
labelCol (str) – The name of the label column
scoredLabelsCol (str) – Scored labels column name, only required if using SparkML estimators
scoresCol (str) – Scores or raw prediction column name, only required if using SparkML estimators
-
getScoredLabelsCol
()[source]¶ - Returns
Scored labels column name, only required if using SparkML estimators
- Return type
-
getScoresCol
()[source]¶ - Returns
Scores or raw prediction column name, only required if using SparkML estimators
- Return type
-
setEvaluationMetric
(value)[source]¶ - Parameters
evaluationMetric (str) – Metric to evaluate models with (default: all)
-
setParams
(evaluationMetric='all', labelCol=None, scoredLabelsCol=None, scoresCol=None)[source]¶ Set the (keyword only) parameters
- Parameters
evaluationMetric (str) – Metric to evaluate models with (default: all)
labelCol (str) – The name of the label column
scoredLabelsCol (str) – Scored labels column name, only required if using SparkML estimators
scoresCol (str) – Scores or raw prediction column name, only required if using SparkML estimators
mmlspark.train.ComputePerInstanceStatistics module¶
-
class
mmlspark.train.ComputePerInstanceStatistics.
ComputePerInstanceStatistics
(evaluationMetric='all', labelCol=None, scoredLabelsCol=None, scoredProbabilitiesCol=None, scoresCol=None)[source]¶ Bases:
mmlspark.core.schema.Utils.ComplexParamsMixin
,pyspark.ml.util.JavaMLReadable
,pyspark.ml.util.JavaMLWritable
,pyspark.ml.wrapper.JavaTransformer
- Parameters
evaluationMetric (str) – Metric to evaluate models with (default: all)
labelCol (str) – The name of the label column
scoredLabelsCol (str) – Scored labels column name, only required if using SparkML estimators
scoredProbabilitiesCol (str) – Scored probabilities, usually calibrated from raw scores, only required if using SparkML estimators
scoresCol (str) – Scores or raw prediction column name, only required if using SparkML estimators
-
getScoredLabelsCol
()[source]¶ - Returns
Scored labels column name, only required if using SparkML estimators
- Return type
-
getScoredProbabilitiesCol
()[source]¶ - Returns
Scored probabilities, usually calibrated from raw scores, only required if using SparkML estimators
- Return type
-
getScoresCol
()[source]¶ - Returns
Scores or raw prediction column name, only required if using SparkML estimators
- Return type
-
setEvaluationMetric
(value)[source]¶ - Parameters
evaluationMetric (str) – Metric to evaluate models with (default: all)
-
setParams
(evaluationMetric='all', labelCol=None, scoredLabelsCol=None, scoredProbabilitiesCol=None, scoresCol=None)[source]¶ Set the (keyword only) parameters
- Parameters
evaluationMetric (str) – Metric to evaluate models with (default: all)
labelCol (str) – The name of the label column
scoredLabelsCol (str) – Scored labels column name, only required if using SparkML estimators
scoredProbabilitiesCol (str) – Scored probabilities, usually calibrated from raw scores, only required if using SparkML estimators
scoresCol (str) – Scores or raw prediction column name, only required if using SparkML estimators
-
setScoredLabelsCol
(value)[source]¶ - Parameters
scoredLabelsCol (str) – Scored labels column name, only required if using SparkML estimators
mmlspark.train.TrainClassifier module¶
mmlspark.train.TrainRegressor module¶
Module contents¶
MicrosoftML is a library of Python classes to interface with the Microsoft scala APIs to utilize Apache Spark to create distibuted machine learning models.
MicrosoftML simplifies training and scoring classifiers and regressors, as well as facilitating the creation of models using the CNTK library, images, and text.