c
com.microsoft.azure.synapse.ml.train
ComputeModelStatistics
Companion object ComputeModelStatistics
class ComputeModelStatistics extends Transformer with ComputeModelStatisticsParams with SynapseMLLogging
Evaluates the given scored dataset.
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- ComputeModelStatistics
- SynapseMLLogging
- ComputeModelStatisticsParams
- HasEvaluationMetric
- HasScoredLabelsCol
- HasScoresCol
- HasLabelCol
- DefaultParamsWritable
- MLWritable
- Wrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Value Members
-
final
def
clear(param: Param[_]): ComputeModelStatistics.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): Transformer
- Definition Classes
- ComputeModelStatistics → Transformer → PipelineStage → Params
-
val
evaluationMetric: Param[String]
- Definition Classes
- HasEvaluationMetric
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEvaluationMetric: String
- Definition Classes
- HasEvaluationMetric
-
def
getLabelCol: String
- Definition Classes
- HasLabelCol
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getParamInfo(p: Param[_]): ParamInfo[_]
- Definition Classes
- BaseWrappable
-
def
getScoredLabelsCol: String
- Definition Classes
- HasScoredLabelsCol
-
def
getScoresCol: String
- Definition Classes
- HasScoresCol
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
labelCol: Param[String]
The name of the label column
The name of the label column
- Definition Classes
- HasLabelCol
-
def
logClass(featureName: String): Unit
- Definition Classes
- SynapseMLLogging
-
def
logFit[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logTransform[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
- Definition Classes
- SynapseMLLogging
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
- lazy val metricsLogger: MetricsLogger
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
var
rocCurve: DataFrame
The ROC curve evaluated for a binary classifier.
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
val
scoredLabelsCol: Param[String]
The name of the scored labels column
The name of the scored labels column
- Definition Classes
- HasScoredLabelsCol
-
val
scoresCol: Param[String]
The name of the scores column
The name of the scores column
- Definition Classes
- HasScoresCol
-
final
def
set[T](param: Param[T], value: T): ComputeModelStatistics.this.type
- Definition Classes
- Params
-
def
setEvaluationMetric(value: String): ComputeModelStatistics.this.type
- Definition Classes
- HasEvaluationMetric
-
def
setLabelCol(value: String): ComputeModelStatistics.this.type
- Definition Classes
- HasLabelCol
-
def
setScoredLabelsCol(value: String): ComputeModelStatistics.this.type
- Definition Classes
- HasScoredLabelsCol
-
def
setScoresCol(value: String): ComputeModelStatistics.this.type
- Definition Classes
- HasScoresCol
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transform(dataset: Dataset[_]): DataFrame
Calculates the metrics for the given dataset and model.
Calculates the metrics for the given dataset and model.
- dataset
the dataset to calculate the metrics for
- returns
DataFrame whose columns contain the calculated metrics
- Definition Classes
- ComputeModelStatistics → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- ComputeModelStatistics → PipelineStage
-
val
uid: String
- Definition Classes
- ComputeModelStatistics → SynapseMLLogging → Identifiable
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable