class TrainRegressor extends Estimator[TrainedRegressorModel] with AutoTrainer[TrainedRegressorModel] with SynapseMLLogging
Trains a regression model.
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- TrainRegressor
- SynapseMLLogging
- AutoTrainer
- Wrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- HasFeaturesCol
- ComplexParamsWritable
- MLWritable
- HasInputCols
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Value Members
-
final
def
clear(param: Param[_]): TrainRegressor.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): Estimator[TrainedRegressorModel]
- Definition Classes
- TrainRegressor → Estimator → PipelineStage → Params
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
featuresCol: Param[String]
The name of the features column
The name of the features column
- Definition Classes
- HasFeaturesCol
-
def
fit(dataset: Dataset[_]): TrainedRegressorModel
Fits the regression model.
Fits the regression model.
- dataset
The input dataset to train.
- returns
The trained regression model.
- Definition Classes
- TrainRegressor → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[TrainedRegressorModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): TrainedRegressorModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): TrainedRegressorModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
-
def
getInputCols: Array[String]
- Definition Classes
- HasInputCols
-
def
getLabelCol: String
- Definition Classes
- HasLabelCol
-
def
getModel: Estimator[_ <: Model[_]]
- Definition Classes
- AutoTrainer
-
def
getNumFeatures: Int
- Definition Classes
- AutoTrainer
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getParamInfo(p: Param[_]): ParamInfo[_]
- Definition Classes
- BaseWrappable
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
val
inputCols: StringArrayParam
The names of the inputColumns
The names of the inputColumns
- Definition Classes
- HasInputCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
labelCol: Param[String]
The name of the label column
The name of the label column
- Definition Classes
- HasLabelCol
-
def
logClass(featureName: String): Unit
- Definition Classes
- SynapseMLLogging
-
def
logFit[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logTransform[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
- Definition Classes
- SynapseMLLogging
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
-
val
model: EstimatorParam
Model to run.
Model to run. See doc on derived classes.
- Definition Classes
- AutoTrainer
-
def
modelDoc: String
Doc for model to run.
Doc for model to run.
- Definition Classes
- TrainRegressor → AutoTrainer
-
val
numFeatures: IntParam
Number of features to hash to
Number of features to hash to
- Definition Classes
- AutoTrainer
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): TrainRegressor.this.type
- Definition Classes
- Params
-
def
setFeaturesCol(value: String): TrainRegressor.this.type
- Definition Classes
- HasFeaturesCol
-
def
setInputCols(value: Array[String]): TrainRegressor.this.type
- Definition Classes
- HasInputCols
-
def
setLabelCol(value: String): TrainRegressor.this.type
- Definition Classes
- HasLabelCol
-
def
setModel(value: Estimator[_ <: Model[_]]): TrainRegressor.this.type
- Definition Classes
- AutoTrainer
-
def
setNumFeatures(value: Int): TrainRegressor.this.type
- Definition Classes
- AutoTrainer
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- TrainRegressor → PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- TrainRegressor → SynapseMLLogging → Identifiable
-
def
write: MLWriter
- Definition Classes
- ComplexParamsWritable → MLWritable