case class ClassifierTrainParams(parallelism: String, topK: Option[Int], numIterations: Int, learningRate: Double, numLeaves: Option[Int], maxBin: Option[Int], binSampleCount: Option[Int], baggingFraction: Option[Double], posBaggingFraction: Option[Double], negBaggingFraction: Option[Double], baggingFreq: Option[Int], baggingSeed: Option[Int], earlyStoppingRound: Int, improvementTolerance: Double, featureFraction: Option[Double], maxDepth: Option[Int], minSumHessianInLeaf: Option[Double], numMachines: Int, modelString: Option[String], isUnbalance: Boolean, verbosity: Int, categoricalFeatures: Array[Int], numClass: Int, boostFromAverage: Boolean, boostingType: String, lambdaL1: Option[Double], lambdaL2: Option[Double], isProvideTrainingMetric: Option[Boolean], metric: Option[String], minGainToSplit: Option[Double], maxDeltaStep: Option[Double], maxBinByFeature: Array[Int], minDataInLeaf: Option[Int], featureNames: Array[String], delegate: Option[LightGBMDelegate], dartModeParams: DartModeParams, executionParams: ExecutionParams, objectiveParams: ObjectiveParams) extends TrainParams with Product with Serializable
Defines the Booster parameters passed to the LightGBM classifier.
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- ClassifierTrainParams
- Product
- Equals
- TrainParams
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
- new ClassifierTrainParams(parallelism: String, topK: Option[Int], numIterations: Int, learningRate: Double, numLeaves: Option[Int], maxBin: Option[Int], binSampleCount: Option[Int], baggingFraction: Option[Double], posBaggingFraction: Option[Double], negBaggingFraction: Option[Double], baggingFreq: Option[Int], baggingSeed: Option[Int], earlyStoppingRound: Int, improvementTolerance: Double, featureFraction: Option[Double], maxDepth: Option[Int], minSumHessianInLeaf: Option[Double], numMachines: Int, modelString: Option[String], isUnbalance: Boolean, verbosity: Int, categoricalFeatures: Array[Int], numClass: Int, boostFromAverage: Boolean, boostingType: String, lambdaL1: Option[Double], lambdaL2: Option[Double], isProvideTrainingMetric: Option[Boolean], metric: Option[String], minGainToSplit: Option[Double], maxDeltaStep: Option[Double], maxBinByFeature: Array[Int], minDataInLeaf: Option[Int], featureNames: Array[String], delegate: Option[LightGBMDelegate], dartModeParams: DartModeParams, executionParams: ExecutionParams, objectiveParams: ObjectiveParams)
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
baggingFraction: Option[Double]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
baggingFreq: Option[Int]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
baggingSeed: Option[Int]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
binSampleCount: Option[Int]
- Definition Classes
- ClassifierTrainParams → TrainParams
- val boostFromAverage: Boolean
-
val
boostingType: String
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
categoricalFeatures: Array[Int]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
dartModeParams: DartModeParams
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
delegate: Option[LightGBMDelegate]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
earlyStoppingRound: Int
- Definition Classes
- ClassifierTrainParams → TrainParams
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
val
executionParams: ExecutionParams
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
featureFraction: Option[Double]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
featureNames: Array[String]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
improvementTolerance: Double
- Definition Classes
- ClassifierTrainParams → TrainParams
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
isProvideTrainingMetric: Option[Boolean]
- Definition Classes
- ClassifierTrainParams → TrainParams
- val isUnbalance: Boolean
-
val
lambdaL1: Option[Double]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
lambdaL2: Option[Double]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
learningRate: Double
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
maxBin: Option[Int]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
maxBinByFeature: Array[Int]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
maxDeltaStep: Option[Double]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
maxDepth: Option[Int]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
metric: Option[String]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
minDataInLeaf: Option[Int]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
minGainToSplit: Option[Double]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
minSumHessianInLeaf: Option[Double]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
modelString: Option[String]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
val
negBaggingFraction: Option[Double]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- val numClass: Int
-
val
numIterations: Int
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
numLeaves: Option[Int]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
numMachines: Int
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
objectiveParams: ObjectiveParams
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
parallelism: String
- Definition Classes
- ClassifierTrainParams → TrainParams
-
def
paramToString[T](paramName: String, paramValueOpt: Option[T]): String
- Definition Classes
- TrainParams
-
def
paramsToString(paramNamesToValues: Array[(String, Option[_])]): String
- Definition Classes
- TrainParams
-
val
posBaggingFraction: Option[Double]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- ClassifierTrainParams → TrainParams → AnyRef → Any
-
val
topK: Option[Int]
- Definition Classes
- ClassifierTrainParams → TrainParams
-
val
verbosity: Int
- Definition Classes
- ClassifierTrainParams → TrainParams
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()