c

com.microsoft.azure.synapse.ml.lightgbm.params

RegressorTrainParams

case class RegressorTrainParams(parallelism: String, topK: Option[Int], numIterations: Int, learningRate: Double, numLeaves: Option[Int], alpha: Double, tweedieVariancePower: Double, maxBin: Option[Int], binSampleCount: Option[Int], baggingFraction: Option[Double], posBaggingFraction: Option[Double], negBaggingFraction: Option[Double], baggingFreq: Option[Int], baggingSeed: Option[Int], earlyStoppingRound: Int, improvementTolerance: Double, featureFraction: Option[Double], maxDepth: Option[Int], minSumHessianInLeaf: Option[Double], numMachines: Int, modelString: Option[String], verbosity: Int, categoricalFeatures: Array[Int], boostFromAverage: Boolean, boostingType: String, lambdaL1: Option[Double], lambdaL2: Option[Double], isProvideTrainingMetric: Option[Boolean], metric: Option[String], minGainToSplit: Option[Double], maxDeltaStep: Option[Double], maxBinByFeature: Array[Int], minDataInLeaf: Option[Int], featureNames: Array[String], delegate: Option[LightGBMDelegate], dartModeParams: DartModeParams, executionParams: ExecutionParams, objectiveParams: ObjectiveParams) extends TrainParams with Product with Serializable

Defines the Booster parameters passed to the LightGBM regressor.

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RegressorTrainParams
  2. Product
  3. Equals
  4. TrainParams
  5. Serializable
  6. Serializable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RegressorTrainParams(parallelism: String, topK: Option[Int], numIterations: Int, learningRate: Double, numLeaves: Option[Int], alpha: Double, tweedieVariancePower: Double, maxBin: Option[Int], binSampleCount: Option[Int], baggingFraction: Option[Double], posBaggingFraction: Option[Double], negBaggingFraction: Option[Double], baggingFreq: Option[Int], baggingSeed: Option[Int], earlyStoppingRound: Int, improvementTolerance: Double, featureFraction: Option[Double], maxDepth: Option[Int], minSumHessianInLeaf: Option[Double], numMachines: Int, modelString: Option[String], verbosity: Int, categoricalFeatures: Array[Int], boostFromAverage: Boolean, boostingType: String, lambdaL1: Option[Double], lambdaL2: Option[Double], isProvideTrainingMetric: Option[Boolean], metric: Option[String], minGainToSplit: Option[Double], maxDeltaStep: Option[Double], maxBinByFeature: Array[Int], minDataInLeaf: Option[Int], featureNames: Array[String], delegate: Option[LightGBMDelegate], dartModeParams: DartModeParams, executionParams: ExecutionParams, objectiveParams: ObjectiveParams)

Value Members

  1. val alpha: Double
  2. val baggingFraction: Option[Double]
    Definition Classes
    RegressorTrainParamsTrainParams
  3. val baggingFreq: Option[Int]
    Definition Classes
    RegressorTrainParamsTrainParams
  4. val baggingSeed: Option[Int]
    Definition Classes
    RegressorTrainParamsTrainParams
  5. val binSampleCount: Option[Int]
    Definition Classes
    RegressorTrainParamsTrainParams
  6. val boostFromAverage: Boolean
  7. val boostingType: String
    Definition Classes
    RegressorTrainParamsTrainParams
  8. val categoricalFeatures: Array[Int]
    Definition Classes
    RegressorTrainParamsTrainParams
  9. val dartModeParams: DartModeParams
    Definition Classes
    RegressorTrainParamsTrainParams
  10. val delegate: Option[LightGBMDelegate]
    Definition Classes
    RegressorTrainParamsTrainParams
  11. val earlyStoppingRound: Int
    Definition Classes
    RegressorTrainParamsTrainParams
  12. val executionParams: ExecutionParams
    Definition Classes
    RegressorTrainParamsTrainParams
  13. val featureFraction: Option[Double]
    Definition Classes
    RegressorTrainParamsTrainParams
  14. val featureNames: Array[String]
    Definition Classes
    RegressorTrainParamsTrainParams
  15. val improvementTolerance: Double
    Definition Classes
    RegressorTrainParamsTrainParams
  16. val isProvideTrainingMetric: Option[Boolean]
    Definition Classes
    RegressorTrainParamsTrainParams
  17. val lambdaL1: Option[Double]
    Definition Classes
    RegressorTrainParamsTrainParams
  18. val lambdaL2: Option[Double]
    Definition Classes
    RegressorTrainParamsTrainParams
  19. val learningRate: Double
    Definition Classes
    RegressorTrainParamsTrainParams
  20. val maxBin: Option[Int]
    Definition Classes
    RegressorTrainParamsTrainParams
  21. val maxBinByFeature: Array[Int]
    Definition Classes
    RegressorTrainParamsTrainParams
  22. val maxDeltaStep: Option[Double]
    Definition Classes
    RegressorTrainParamsTrainParams
  23. val maxDepth: Option[Int]
    Definition Classes
    RegressorTrainParamsTrainParams
  24. val metric: Option[String]
    Definition Classes
    RegressorTrainParamsTrainParams
  25. val minDataInLeaf: Option[Int]
    Definition Classes
    RegressorTrainParamsTrainParams
  26. val minGainToSplit: Option[Double]
    Definition Classes
    RegressorTrainParamsTrainParams
  27. val minSumHessianInLeaf: Option[Double]
    Definition Classes
    RegressorTrainParamsTrainParams
  28. val modelString: Option[String]
    Definition Classes
    RegressorTrainParamsTrainParams
  29. val negBaggingFraction: Option[Double]
    Definition Classes
    RegressorTrainParamsTrainParams
  30. val numIterations: Int
    Definition Classes
    RegressorTrainParamsTrainParams
  31. val numLeaves: Option[Int]
    Definition Classes
    RegressorTrainParamsTrainParams
  32. val numMachines: Int
    Definition Classes
    RegressorTrainParamsTrainParams
  33. val objectiveParams: ObjectiveParams
    Definition Classes
    RegressorTrainParamsTrainParams
  34. val parallelism: String
    Definition Classes
    RegressorTrainParamsTrainParams
  35. def paramToString[T](paramName: String, paramValueOpt: Option[T]): String
    Definition Classes
    TrainParams
  36. def paramsToString(paramNamesToValues: Array[(String, Option[_])]): String
    Definition Classes
    TrainParams
  37. val posBaggingFraction: Option[Double]
    Definition Classes
    RegressorTrainParamsTrainParams
  38. def toString(): String
    Definition Classes
    RegressorTrainParamsTrainParams → AnyRef → Any
  39. val topK: Option[Int]
    Definition Classes
    RegressorTrainParamsTrainParams
  40. val tweedieVariancePower: Double
  41. val verbosity: Int
    Definition Classes
    RegressorTrainParamsTrainParams