abstract class TrainParams extends Serializable
Defines the common Booster parameters passed to the LightGBM learners.
Linear Supertypes
Known Subclasses
Ordering
- Alphabetic
- By Inheritance
Inherited
- TrainParams
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
- new TrainParams()
Abstract Value Members
- abstract def baggingFraction: Option[Double]
- abstract def baggingFreq: Option[Int]
- abstract def baggingSeed: Option[Int]
- abstract def binSampleCount: Option[Int]
- abstract def boostingType: String
- abstract def categoricalFeatures: Array[Int]
- abstract def dartModeParams: DartModeParams
- abstract def delegate: Option[LightGBMDelegate]
- abstract def earlyStoppingRound: Int
- abstract def executionParams: ExecutionParams
- abstract def featureFraction: Option[Double]
- abstract def featureNames: Array[String]
- abstract def improvementTolerance: Double
- abstract def isProvideTrainingMetric: Option[Boolean]
- abstract def lambdaL1: Option[Double]
- abstract def lambdaL2: Option[Double]
- abstract def learningRate: Double
- abstract def maxBin: Option[Int]
- abstract def maxBinByFeature: Array[Int]
- abstract def maxDeltaStep: Option[Double]
- abstract def maxDepth: Option[Int]
- abstract def metric: Option[String]
- abstract def minDataInLeaf: Option[Int]
- abstract def minGainToSplit: Option[Double]
- abstract def minSumHessianInLeaf: Option[Double]
- abstract def modelString: Option[String]
- abstract def negBaggingFraction: Option[Double]
- abstract def numIterations: Int
- abstract def numLeaves: Option[Int]
- abstract def numMachines: Int
- abstract def objectiveParams: ObjectiveParams
- abstract def parallelism: String
- abstract def posBaggingFraction: Option[Double]
- abstract def topK: Option[Int]
- abstract def verbosity: Int