package params
Type Members
-
case class
ClassifierTrainParams(parallelism: String, topK: Option[Int], numIterations: Int, learningRate: Double, numLeaves: Option[Int], maxBin: Option[Int], binSampleCount: Option[Int], baggingFraction: Option[Double], posBaggingFraction: Option[Double], negBaggingFraction: Option[Double], baggingFreq: Option[Int], baggingSeed: Option[Int], earlyStoppingRound: Int, improvementTolerance: Double, featureFraction: Option[Double], maxDepth: Option[Int], minSumHessianInLeaf: Option[Double], numMachines: Int, modelString: Option[String], isUnbalance: Boolean, verbosity: Int, categoricalFeatures: Array[Int], numClass: Int, boostFromAverage: Boolean, boostingType: String, lambdaL1: Option[Double], lambdaL2: Option[Double], isProvideTrainingMetric: Option[Boolean], metric: Option[String], minGainToSplit: Option[Double], maxDeltaStep: Option[Double], maxBinByFeature: Array[Int], minDataInLeaf: Option[Int], featureNames: Array[String], delegate: Option[LightGBMDelegate], dartModeParams: DartModeParams, executionParams: ExecutionParams, objectiveParams: ObjectiveParams) extends TrainParams with Product with Serializable
Defines the Booster parameters passed to the LightGBM classifier.
-
case class
DartModeParams(dropRate: Double, maxDrop: Int, skipDrop: Double, xgboostDartMode: Boolean, uniformDrop: Boolean) extends Serializable with Product
Defines the dart mode parameters passed to the LightGBM learners.
-
case class
ExecutionParams(chunkSize: Int, matrixType: String, numThreads: Int, useSingleDatasetMode: Boolean) extends Serializable with Product
Defines parameters related to lightgbm execution in spark.
Defines parameters related to lightgbm execution in spark.
- chunkSize
Advanced parameter to specify the chunk size for copying Java data to native.
- matrixType
Advanced parameter to specify whether the native lightgbm matrix constructed should be sparse or dense.
- numThreads
The number of threads to run the native lightgbm training with on each worker.
-
class
FObjParam extends ComplexParam[FObjTrait]
Param for FObjTrait.
Param for FObjTrait. Needed as spark has explicit params for many different types but not FObjTrait.
- trait FObjTrait extends Serializable
-
trait
LightGBMBinParams extends Wrappable
Defines common parameters across all LightGBM learners related to histogram bin construction.
-
class
LightGBMBoosterParam extends ComplexParam[LightGBMBooster]
Custom ComplexParam for LightGBMBooster, to make it settable on the LightGBM models.
-
trait
LightGBMDartParams extends Wrappable
Defines parameters for dart mode across all LightGBM learners.
-
trait
LightGBMExecutionParams extends Wrappable
Defines common LightGBM execution parameters.
-
trait
LightGBMFractionParams extends Wrappable
Defines parameters for fraction across all LightGBM learners.
-
trait
LightGBMLearnerParams extends Wrappable
Defines common parameters across all LightGBM learners related to learning score evolution.
-
trait
LightGBMModelParams extends Wrappable
Defines parameters for LightGBM models
-
trait
LightGBMObjectiveParams extends Wrappable
Defines common objective parameters
-
trait
LightGBMParams extends Wrappable with DefaultParamsWritable with HasWeightCol with HasValidationIndicatorCol with HasInitScoreCol with LightGBMExecutionParams with LightGBMSlotParams with LightGBMFractionParams with LightGBMBinParams with LightGBMLearnerParams with LightGBMDartParams with LightGBMPredictionParams with LightGBMObjectiveParams
Defines common parameters across all LightGBM learners.
-
trait
LightGBMPredictionParams extends Wrappable
Defines common prediction parameters across LightGBM Ranker, Classifier and Regressor
-
trait
LightGBMSlotParams extends Wrappable
Defines parameters for slots across all LightGBM learners.
-
case class
ObjectiveParams(objective: String, fobj: Option[FObjTrait]) extends Serializable with Product
Defines parameters related to the lightgbm objective function.
Defines parameters related to the lightgbm objective function.
- objective
The Objective. For regression applications, this can be: regression_l2, regression_l1, huber, fair, poisson, quantile, mape, gamma or tweedie. For classification applications, this can be: binary, multiclass, or multiclassova.
- fobj
Customized objective function. Should accept two parameters: preds, train_data, and return (grad, hess).
-
case class
RankerTrainParams(parallelism: String, topK: Option[Int], numIterations: Int, learningRate: Double, numLeaves: Option[Int], maxBin: Option[Int], binSampleCount: Option[Int], baggingFraction: Option[Double], posBaggingFraction: Option[Double], negBaggingFraction: Option[Double], baggingFreq: Option[Int], baggingSeed: Option[Int], earlyStoppingRound: Int, improvementTolerance: Double, featureFraction: Option[Double], maxDepth: Option[Int], minSumHessianInLeaf: Option[Double], numMachines: Int, modelString: Option[String], verbosity: Int, categoricalFeatures: Array[Int], boostingType: String, lambdaL1: Option[Double], lambdaL2: Option[Double], maxPosition: Int, labelGain: Array[Double], isProvideTrainingMetric: Option[Boolean], metric: Option[String], evalAt: Array[Int], minGainToSplit: Option[Double], maxDeltaStep: Option[Double], maxBinByFeature: Array[Int], minDataInLeaf: Option[Int], featureNames: Array[String], delegate: Option[LightGBMDelegate], dartModeParams: DartModeParams, executionParams: ExecutionParams, objectiveParams: ObjectiveParams) extends TrainParams with Product with Serializable
Defines the Booster parameters passed to the LightGBM ranker.
-
case class
RegressorTrainParams(parallelism: String, topK: Option[Int], numIterations: Int, learningRate: Double, numLeaves: Option[Int], alpha: Double, tweedieVariancePower: Double, maxBin: Option[Int], binSampleCount: Option[Int], baggingFraction: Option[Double], posBaggingFraction: Option[Double], negBaggingFraction: Option[Double], baggingFreq: Option[Int], baggingSeed: Option[Int], earlyStoppingRound: Int, improvementTolerance: Double, featureFraction: Option[Double], maxDepth: Option[Int], minSumHessianInLeaf: Option[Double], numMachines: Int, modelString: Option[String], verbosity: Int, categoricalFeatures: Array[Int], boostFromAverage: Boolean, boostingType: String, lambdaL1: Option[Double], lambdaL2: Option[Double], isProvideTrainingMetric: Option[Boolean], metric: Option[String], minGainToSplit: Option[Double], maxDeltaStep: Option[Double], maxBinByFeature: Array[Int], minDataInLeaf: Option[Int], featureNames: Array[String], delegate: Option[LightGBMDelegate], dartModeParams: DartModeParams, executionParams: ExecutionParams, objectiveParams: ObjectiveParams) extends TrainParams with Product with Serializable
Defines the Booster parameters passed to the LightGBM regressor.
-
abstract
class
TrainParams extends Serializable
Defines the common Booster parameters passed to the LightGBM learners.